
EnglishUniversitetet i Bergen
Det matematisk-naturvitenskapelige fakultet

Exam in : INF226 Software Security
Semester : Autumn 2021
Time : 09:00 – 12:00, 2nd of December 2021
Number of pages : 7
Permitted aids : Open-book exam

• This exam counts for 60% of your final grade in this course.
• Points on the exercises indicate approximate percentage weight on the total final

grade.
• Give justifications for your answers, unless otherwise specified.
• Use precise language and make sure to read the exercises carefully.

Exercise 1 (12 points)
Answer the questions below with one or two sentences on each.

a) Where in the memory layout of a C program does the call stack lie?
b) How can address space layout randomization (ASLR) make it more difficult for an

attacker to perform return oriented programming?
c) What does the Secure flag on a cookie indicate?
d) Why should untrusted data not be inserted directly into a SQL query using string

concatenation?
e) Why do we add salt to a key derivation function when implementing password based

authentication?
f) What is the difference between static and dynamic program analysis?

1

Exercice 2 (12 points)

Services such as GitLab and GitHub provide a web interface for managing git-repositories.
When pushing changes to the repositories, users must authenticate to the server hosting
the repository. GitLab and GitHub provide two alternative authentication methods, au-
thentication tokens and SSH public/private keys. We will here focus on the SSH key
pair method of authentication.

Figure 1: A screenshot of the key entering form on GitLab

The way SSH key pair authentication works is that the user generates a key pair on
their local machine. Then they visit their GitLab settings page where there is a form to
enter their public key. After the public key has been posted, the corresponding private
key can be used to push changes to the repository.

Let us now imagine that the key-submission form has not been protected from cross-
site request forgery (CSRF). For instance, the HTML code for this form (if simplified a
bit) could look like:

<form id="new_key" action="/profile/keys" method="POST">
<p>Paste your public SSH key.</p>
<textarea name="key[key]" id="key_key"></textarea>

<label class="label-bold" for="key_title">Title</label>
<input name="key[title]" id="key_title">

<input type="submit" name="commit" value="Add key">
</form>

2

a) Explain how an attacker could use CSRF to insert their own public key into a victim’s
list of trusted keys. What would the victim need to do in order for the attack to
begin?

b) Would the CSRF be prevented if the SameSite flag on the session cookie was set to
‘Lax’? Why/why not?

c) How would the security of the form be affected if method was set to “GET” instead
of “POST”?

Exercice 3 (12 points)
Here is a simplified excerpt from the original InChat source code, which generates HTML
code for showing an event in a channel.

// BEGIN CODE LISTING
/**
* Render an event as HTML.
*/

private Consumer<Stored<Channel.Event>>
printEvent(PrintWriter out, Stored<Channel> channel) {

return (e -> {
switch(e.value.type) {

case message:
out.println("<div class=\"entry\">");
out.println(" <div class=\"user\">" + e.value.sender + "</div>");
out.println(" <div class=\"text\">" + e.value.message);
out.println(" </div>");
out.println(" <div class=\"messagecontrols\">");
out.println(" <form action=\"/channel/"

+ channel.value.name + "\" method=\"POST\">");
out.println(" <input type=\"hidden\" name=\"message\" value=\""

+ e.identity + "\">");
out.println(" <input type=\"submit\"

name=\"deletemessage\"
value=\"Delete\">");

out.println(" </form><form style=\"grid-area: edit;\"");
out.println(" action=\"/editMessage\"");
out.println(" method=\"POST\">");

out.println(" <input type=\"hidden\"
name=\"message\"
value=\"" + e.identity + "\">");

out.println(" <input type=\"hidden\"
name=\"channelname\"
value=\"" + channel.value.name + "\">");

out.println(" <input type=\"hidden\"
name=\"originalcontent\"
value=\"" + e.value.message + "\">");

3

out.println(" <input type=\"submit\"
name=\"editmessage\" value=\"Edit\">");

out.println(" </form>");
out.println(" </div>");
out.println("</div>");
return;

case join:
out.println("<p>" + formatter.format(e.value.time) + " "

+ e.value.sender + " has joined!</p>");
return;

}
});

}
// END CODE LISTING

One of the issues in this code is that it is vulnerable to cross-site scripting (XSS).

a) Explain why the above code is vulnerable to cross-site scripting.
b) How would you fix this vulnerability?

An attacker could exploit this vulnerability by crafting a special message with JavaScript
code which will execute when a user views the message in the chat.

c) What message would an attacker send in order to cause a user viewing the message
to send a message to a channel? To be specific, assume that the channel is called
“SuperChannel”, and that the attacker wants the user to post the message “XYZZY”.
For reference, the source code for the message sending form is below.

<form class="entry" action="/channel/SuperChannel" method="post">
<div class="user">You</div>
<input type="hidden"

name="newmessage"
value="Send">

<textarea id="messageInput"
name="message"></textarea>

<div class="controls\">
<input type="submit"

name="send"
value="Send"></div>

</form>

Exercice 4 (10 points)
A local dance club and a local music studio has an agreement that, for a small fee, visiting
musicians playing in the club can use studio while visiting – provided it is not already
booked. In order to minimise the organisational overhead, the music studio decides to put
a booking system online for the musicians.

4

You are tasked with getting the authentication mechanisms up and running for
this booking site, so that the musicians can register and log in. Part of the specification
is that it should use password authentication, so that is what you will implement.

a) How would you ensure that the users are likely to pick good passwords? What
requirements and other measures would you put in place?

For the platform you are building the site on, you find four plugins for storing pass-
words. Their details are specified below.

Name Storage Password format
XAuth SHA1 hash ASCII
YAuth Plaintext 4–6 digit numeric code
ZAuth Argon2 Unicode
WAuth SHA256 + salt Unicode

b) Compare the four mechanisms above, from the perspective of a potential breach of
the database. How would the various mechanisms fare against brute force, dictionary
and rainbow table attacks?

After some deliberation, you decide to add a second factor to your authentication
mechanism. At first you consider SMS verification codes.

c) How can SMS verification codes be vulnerable to phishing attacks, such as tricking
the user to visiting a proxy site?

You then read about WebAuthn, which is two-factor authentication based on public
key cryptography.

d) How could public key based two-factor authentication protect against a malicious
proxy?

Exercice 5 (14 points)
In this exercice we will consider a hypothetical chat system, called SafeChat. This system
resembles InChat which was in the mandatory assignment, but we imagine that the issues
we found in the assignments have been fixed and that the system now has an access control
system. There has also been added a notion of presence where you can see which users in
the channel are currently logged in.

The system has the following permissions:

Permission :
Join
Read
Write
Moderate

5

The Join permission gives access to join the channel and see the list of other joined
users. Read lets a user read the messages in the channel, and write lets a user post
messages to the channel. The Moderate permission gives access to delete messages and
set permissions for other users.

The access control is then organised in a table according to the schema:

User Channel Permission
.

User is a foreign key to the identity field of a user, Channel a foreign key to the identity
field of a channel, and Permission a foreign key to the above permission table.

Example: In a channel called SuperChannel, with Alice, Bob and Mallory all chatting,
Alice being the moderator, the table would look like:

User Channel Permission
Alice SuperChannel Join
Alice SuperChannel Read
Alice SuperChannel Write
Alice SuperChannel Moderate
Bob SuperChannel Join
Bob SuperChannel Read
Bob SuperChannel Write
Maleroy SuperChannel Join
Maleroy SuperChannel Read
Maleroy SuperChannel Write

Sometimes Maleroy misbehaves, and Alice will mute her, taking away her writing
privileges:

User Channel Permission
Alice SuperChannel Join
Alice SuperChannel Read
Alice SuperChannel Write
Alice SuperChannel Moderate
Bob SuperChannel Join
Bob SuperChannel Read
Bob SuperChannel Write
Mallory SuperChannel Join
Mallory SuperChannel Read

a) Which kind of access control system is this? (Of the kinds we have discussed in
class.)

The developers of SafeChat then implemented a bot – a program which joins the chat

6

as a client and can perform various actions at the command of the users. For instance, if
Bob is not present in the chat at the moment, Alice can issue a command to the bot to
write a message when Bob returns:

@BOT say "Hi Bob!" in SuperChannel when Bob is present

The messages can also be timed:

@BOT say "Happy New Year!" in SuperChannel at 2022-01-01T00:00

The bot was super useful – but a problem was soon discovered: By design, the bot
had Write access to all channels. It needed this to perform its function. So, Mallory, who
had been banned from SuperChat for bad behaviour, started giving the bot commands to
post messages there for her:

@BOT say "Alice is STUPID!" in SuperChannel when Alice is present

At first the developers tried to go around this issue by implementing checks in the bot
code: When a user issues a say-command, the bot checks that they are in the joined list
of that channel. But it was still not certain that the user had actual write access – so this
only worked when Mallory was banned, not muted.

Another problem with this approach was that Mallory would join a channel, fill the
bot with obscene messages for the future, and then leave. Banning Mallory after the fact
would then not stop the flood of messages from the bot.

b) What general class of security problems does the bot issue belong to? Explain in
some detail why the problem belongs to this class. Hint: this class of problems is
inherent to this kind of access control system.

It then occurred to the developers that perhaps a completely different model of access
control would be needed to solve this problem.

After some research, they decided to go with a capability based access control system.
The idea would be that the bot would use the command issuer’s capabilities
when performing actions.

c) Suggest a table schema for a capability based access control system for SafeChat,
and explain your design. The system should have centrally controlled capability
ownership stored in the database or unguessable tokens – choose what you find
most appropriate.

An important feature in a capability based access control system is the ability to
transfer capabilities from one user to another. And in SafeChat it would also be important
to be able to revoke a capability.

d) How would transferring capabilities between users be done in the database schema
you outlined?

e) How would revoking capabilities between users be done in this system?
f) How should the capabilities be organised for the bot to prevent the issues SafeChat

has been struggling with? Give a concrete example, for instance using the situation
with SuperChannel.

7

	Exercise 1 (12 points)
	Exercice 2 (12 points)
	Exercice 3 (12 points)
	Exercice 4 (10 points)
	Exercice 5 (14 points)

