Commit bcce9155 authored by jeq008-uib's avatar jeq008-uib
Browse files

correction.

parent 9b8192cb
%% Cell type:markdown id: tags:
# BIOINF 305. Assignment - week 37.
## Assem Maratova
%% Cell type:markdown id: tags:
**Simulate the dynamics of a feedforward loop (X->Y, Y->Z, X->Z).**
Make the following assumptions:
- The cell expresses numerous copies of protein X. Whenever signal Sx appears or disappears, step-like activation or deactivation of X is triggered (no delay between Sx switching on/off and X becoming activated/deactivated).
- The signal Sy for activation of Y is present throughout the simulation such that all copies of protein Y that are produced immediately become active, Y*=Y.
- The production rate of Y is modelled using an activating or repressing Hill function f(X).
- The production rate of Z is modelled using a product of activating or repressing Hill functions f(X)*g(Y) (AND logic).
%% Cell type:code id: tags:
``` python
import numpy as np
import pandas as pd
from scipy.integrate import odeint
import matplotlib.pyplot as plt
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
# setting some parameters for plots
plt.style.use('seaborn')
SMALL_SIZE = 12
MEDIUM_SIZE = 16
BIGGER_SIZE = 20
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.rcParams['figure.figsize'] = 10 , 6 # default figure size
```
%% Cell type:code id: tags:
``` python
def Hill_activator(X,K,n):
Xn = np.power(X,n)
Kn = np.power(K,n)
f_X = Xn/((Kn)+Xn)
return f_X
def Hill_repressor(X,K,n):
f_X = 1.0 - Hill_activator(X,K,n)
return f_X
```
%% Cell type:code id: tags:
``` python
def Hill_y_regulator(Y,t,X,B,a,K,n):
return B*Hill_activator(X,K,n)-(a*Y)
def Hill_z_regulator(Z,t,X,Y,B,a,K1,K2,n):
return B*Hill_activator(X,K1,n)*Hill_activator(Y,K2,n)-(a*Z)
```
%% Cell type:code id: tags:
``` python
# data for simulation
Bx, ax = 1, 1
By, ay = 1, 1
Bz, az = 1, 1
Kxy, Kyz = 0.5, 0.75
n = 20
D = [5,15,25,28]
time = np.linspace(0,35,100)
signal = 1*((time>D[0])&(time<D[1])) | ((time>D[2])&(time<D[3]))
```
%% Cell type:code id: tags:
``` python
def rate_XY(u,t,ax,ay,az,Bx,By,Bz,Kxy,Kyz,n,D):
x,y,z = u
dxdt = step(x,t,Bx,ax,D)
if (t>D[0] and t<D[1]) or (t>D[2] and t<D[3]):
x = x
else:
x = 0
dydt = Hill_y_regulator(y,t,x,By,ay,Kxy,n)
dzdt = Hill_z_regulator(z,t,x,y,Bz,az,Kxy,Kyz,n)
return [dxdt,dydt,dzdt]
def step(X,t,B,a,D):
if (t>D[0] and t<D[1]) or (t>D[2] and t<D[3]):
dxdt = B - (a*X)
else:
dxdt = -(a*X)
return dxdt
```
%% Cell type:code id: tags:
``` python
U1 = odeint(rate_XY,[0,0,0],time,
args=(ax,ay,az,Bx,By,Bz,Kxy,Kyz,n,D))
```
%% Cell type:code id: tags:
``` python
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.step(time,signal)
ax1.set_ylabel('Signal Sx')
ax2.plot(time,U1[:,0],label='X')
ax2.plot(time,U1[:,1],label='Y')
ax2.plot(time,U1[:,2],label='Z')
ax2.set_xlabel('Time')
ax2.set_ylabel('Production')
ax2.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
**Coherent FFL where X and Y are both activators**
- Calculate the temporal profiles of Y and Z following an ON step of Sx (Sx=0 for t<=0 and Sx=1 for t>0).
- Calculate the temporal profiles of Y and Z following an OFF step of Sx (Sx=1 for t<=0 and Sx=0 for t>0).
- Calculate the temporal profiles of Y and Z for pulses of Sx (Sx=0 except for a pulse of duration D). Compare the profiles for pulses of various lengths.
**Incoherent FFL where X is an activator and Y a repressor**
- Calculate the temporal profiles of Y and Z following an ON step of Sx (Sx=0 for t<=0 and Sx=1 for t>0).
- Calculate the temporal profiles of Y and Z following an OFF step of Sx (Sx=1 for t<=0 and Sx=0 for t>0).
%% Cell type:code id: tags:
``` python
def d_x(X,t,b,a,D):
if t<D:
dxdt = b - (a*X)
else:
dxdt = -(a*X)
return dxdt
def d_y(Y,t,X,b,a,D):
if t<D:
dydt = b - (a*Y)
else:
dydt = -(a*Y)
return dydt
def d_z(Z,t,X,Y,b,b_,a,T_,D):
if t<T_:
dzdt = b - (a*Z)
elif (t>T_) and (t<D):
dzdt = b_ - (a*Z)
else:
dzdt = -(a*Z)
return dzdt
```
%% Cell type:code id: tags:
``` python
# additional data for simulation
Bz_ = 0.5
Yst = By/ay
Xst = Bx/ax
Zm = Bz/az
Zst = Bz_/az
T_ = (1/ay)*np.log(1/(1-(Kyz/Yst)))
D = 15
signal = 1*(time>0)&(time<D)
```
%% Cell type:code id: tags:
``` python
def rate_XY_2(u,t,ax,ay,az,Bx,By,Bz,Bz_,T_,D):
x,y,z = u
dxdt = d_x(x,t,Bx,ax,D)
dydt = d_y(y,t,x,By,ay,D)
dzdt = d_z(z,t,x,y,Bz,Bz_,az,T_,D)
return [dxdt,dydt,dzdt]
```
%% Cell type:code id: tags:
``` python
U2 = odeint(rate_XY_2,[0,0,0],time,args=(ax,ay,az,Bx,By,Bz,Bz_,T_,D))
```
%% Cell type:code id: tags:
``` python
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=False,figsize=(10, 6))
ax1.step(time,signal)
ax1.set_ylabel('Sx')
ax2.plot(time,U2[:,1],label='Y')
ax2.plot(time,U2[:,2],label='Z')
ax2.set_xlabel('Time')
ax2.set_ylabel('Production')
ax2.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment