Commit 16142e59 authored by jeq008-uib's avatar jeq008-uib
Browse files

assignment 37 and 38 added

parent cc165350
%% Cell type:markdown id: tags:
# BIOINF 305. Assignment - week 37.
## Assem Maratova
%% Cell type:markdown id: tags:
**Simulate the dynamics of a feedforward loop (X->Y, Y->Z, X->Z).**
Make the following assumptions:
- The cell expresses numerous copies of protein X. Whenever signal Sx appears or disappears, step-like activation or deactivation of X is triggered (no delay between Sx switching on/off and X becoming activated/deactivated).
- The signal Sy for activation of Y is present throughout the simulation such that all copies of protein Y that are produced immediately become active, Y*=Y.
- The production rate of Y is modelled using an activating or repressing Hill function f(X).
- The production rate of Z is modelled using a product of activating or repressing Hill functions f(X)*g(Y) (AND logic).
%% Cell type:code id: tags:
``` python
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
# setting some parameters for plots
plt.style.use('seaborn')
SMALL_SIZE = 12
MEDIUM_SIZE = 16
BIGGER_SIZE = 20
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.rcParams['figure.figsize'] = 10 , 6 # default figure size
```
%% Cell type:code id: tags:
``` python
def Hill_activator(X,K,n):
Xn = np.power(X,n)
Kn = np.power(K,n)
f_X = Xn/((Kn)+Xn)
return f_X
def Hill_repressor(X,K,n):
f_X = 1.0 - Hill_activator(X,K,n)
return f_X
```
%% Cell type:code id: tags:
``` python
def Hill_y_regulator(Y,t,X,B,a,K,n):
return B*Hill_activator(X,K,n)-(a*Y)
def Hill_z_regulator(Z,t,X,Y,B,a,Kxy,Kyz,n):
return B*Hill_activator(X,Kxy,n)*Hill_activator(Y,Kyz,n)-(a*Z)
```
%% Cell type:code id: tags:
``` python
# data for simulation
Bx, ax = 1, 1
By, ay = 1, 1
Bz, az = 1, 1
Kxy, Kyz = 0.5, 0.75
n = 20
D = [5,15,25,28]
time = np.linspace(0,35,100)
signal = 1*((time>D[0])&(time<D[1])) | ((time>D[2])&(time<D[3]))
```
%% Cell type:code id: tags:
``` python
def rate_X_Y(u,t,ax,ay,az,Bx,By,Bz,Kxy,Kyz,n,D):
x,y,z = u
dxdt = step_x(x,t,Bx,ax,D)
if (t<D[0] and t>D[1]) or (t<D[2] and t>D[3]):
x = 0
dydt = Hill_y_regulator(y,t,x,By,ay,Kxy,n)
dzdt = Hill_z_regulator(z,t,x,y,Bz,az,Kxy,Kyz,n)
return [dxdt,dydt,dzdt]
def step_x(X,t,B,a,D):
if (t>D[0] and t<D[1]) or (t>D[2] and t<D[3]):
dxdt = B - (a*X)
else:
dxdt = -(a*X)
return dxdt
```
%% Cell type:code id: tags:
``` python
U1 = odeint(rate_X_Y,[0,0,0],time,
args=(ax,ay,az,Bx,By,Bz,Kxy,Kyz,n,D))
```
%% Cell type:code id: tags:
``` python
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.step(time,signal)
ax1.set_ylabel('Signal Sx')
ax2.plot(time,U1[:,0],label='X')
ax2.plot(time,U1[:,1],label='Y')
ax2.plot(time,U1[:,2],label='Z')
ax2.set_xlabel('Time')
ax2.set_ylabel('Production')
ax2.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
**Coherent FFL where X and Y are both activators**
- Calculate the temporal profiles of Y and Z following an ON step of Sx (Sx=0 for t<=0 and Sx=1 for t>0).
- Calculate the temporal profiles of Y and Z following an OFF step of Sx (Sx=1 for t<=0 and Sx=0 for t>0).
- Calculate the temporal profiles of Y and Z for pulses of Sx (Sx=0 except for a pulse of duration D). Compare the profiles for pulses of various lengths.
**Incoherent FFL where X is an activator and Y a repressor**
- Calculate the temporal profiles of Y and Z following an ON step of Sx (Sx=0 for t<=0 and Sx=1 for t>0).
- Calculate the temporal profiles of Y and Z following an OFF step of Sx (Sx=1 for t<=0 and Sx=0 for t>0).
%% Cell type:code id: tags:
``` python
def d_x(X,t,b,a,D):
if t<D:
dxdt = b - (a*X)
else:
dxdt = -(a*X)
return dxdt
def d_y(Y,t,X,b,a,D):
if t<D:
dydt = b - (a*Y)
else:
dydt = -(a*Y)
return dydt
def d_z(Z,t,X,Y,b,b_,a,T_,D):
if t<T_:
dzdt = b - (a*Z)
elif (t>T_) and (t<D):
dzdt = b_ - (a*Z)
else:
dzdt = -(a*Z)
return dzdt
```
%% Cell type:code id: tags:
``` python
# additional data for simulation
Bz_ = 0.5
Xst, Yst = Bx/ax, By/ay
Zm, Zst= Bz/az, Bz_/az
T_ = (1/ay)*np.log(1/(1-(Kyz/Yst)))
D = 15
signal = 1*(time>0)&(time<D)
```
%% Cell type:code id: tags:
``` python
def rate_XY_2(u,t,ax,ay,az,Bx,By,Bz,Bz_,T_,D):
def rate_X_Y_2(u,t,ax,ay,az,Bx,By,Bz,Bz_,T_,D):
x,y,z = u
dxdt = d_x(x,t,Bx,ax,D)
dydt = d_y(y,t,x,By,ay,D)
dzdt = d_z(z,t,x,y,Bz,Bz_,az,T_,D)
return [dxdt,dydt,dzdt]
```
%% Cell type:code id: tags:
``` python
U2 = odeint(rate_XY_2,[0,0,0],time,args=(ax,ay,az,Bx,By,Bz,Bz_,T_,D))
U2 = odeint(rate_X_Y_2,[0,0,0],time,args=(ax,ay,az,Bx,By,Bz,Bz_,T_,D))
```
%% Cell type:code id: tags:
``` python
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=False,figsize=(10, 6))
ax1.step(time,signal)
ax1.set_ylabel('Sx')
ax2.plot(time,U2[:,1],label='Y')
ax2.plot(time,U2[:,2],label='Z')
ax2.set_xlabel('Time')
ax2.set_ylabel('Production')
ax2.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
......
%% Cell type:markdown id: tags:
# BIOINF 305. Assignment - week 38.
## Assem Maratova
%% Cell type:markdown id: tags:
Design and implement the network of interlocked feedforward loops shown in the figure such that the simulated profiles of the output genes in response to switching on X1 reproduce the profiles in the figure.
%% Cell type:markdown id: tags:
<img src="image.jpg" align="center"/>
%% Cell type:code id: tags:
``` python
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
# setting some parameters for plots
plt.style.use('seaborn')
SMALL_SIZE = 12
MEDIUM_SIZE = 16
BIGGER_SIZE = 20
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.rcParams['figure.figsize'] = 10 , 6 # default figure size
```
%% Cell type:code id: tags:
``` python
def Hill_activator(X,K,n):
Xn = np.power(X,n)
Kn = np.power(K,n)
f_X = Xn/((Kn)+Xn)
return f_X
def Hill_repressor(X,K,n):
f_X = 1.0 - Hill_activator(X,K,n)
return f_X
```
%% Cell type:code id: tags:
``` python
def Hill_y_regulator(Y,t,X,B,a,K,n):
return B*Hill_activator(X,K,n)-(a*Y)
def Hill_z_regulator(Z,t,X,Y,B,a,K1,K2,n,Y_act):
def Hill_z_regulator(Z,t,X,Y,B,a,Kxy,Kyz,n,Y_act):
if Y_act:
return B*Hill_activator(X,K1,n)*Hill_activator(Y,K2,n)-(a*Z)
return B*Hill_activator(X,Kxy,n)*Hill_activator(Y,Kyz,n)-(a*Z)
else:
return B*Hill_activator(X,K1,n)*Hill_repressor(Y,K2,n)-(a*Z)
return B*Hill_activator(X,Kxy,n)*Hill_repressor(Y,Kyz,n)-(a*Z)
```
%% Cell type:code id: tags:
``` python
def d_x(X,t,B,a):
return B - (a*X)
def rate_Z1_Z2_Z3(u,t,B,a,K,n):
x1, x2, y1, y2, z1, z2, z3 = u
dx1dt = d_x(x1,t,B,a)
dy1dt = Hill_y_regulator(y1,t,x1,B,a,K,n)
dx2dt = Hill_z_regulator(x2,t,x1,y1,B,a,K,K,n,Y_act=True)
dz1dt = Hill_z_regulator(z1,t,x1,y1,B,a,K,K,n,Y_act=False)
dy2dt = Hill_y_regulator(y2,t,x2,B,a,K,n)
dz2dt = Hill_z_regulator(z2,t,x2,y2,B,a,K,K,n,Y_act=False)
dz3dt = Hill_z_regulator(z3,t,x2,y2,B,a,K,K,n,Y_act=True)
return [dx1dt, dx2dt, dy1dt, dy2dt, dz1dt, dz2dt, dz3dt]
```
%% Cell type:code id: tags:
``` python
B, a = 1, 1
K = 0.7
n = 50
time = np.linspace(0,20,100)
U = odeint(rate_Z1_Z2_Z3,[0,0,0,0,0,0,0],time,args=(B,a,K,n))
```
%% Cell type:code id: tags:
``` python
plt.plot(time,U[:,4],label='Z1')
plt.plot(time,U[:,5],label='Z2')
plt.plot(time,U[:,6],label='Z3')
plt.xlabel('Time')
plt.ylabel('Z')
plt.legend()
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment